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Abstract

In this project, we would consider the problem of traffic routing, one of

the most studied problems in Algorithmic Game Theory. One of the key met-

rics is the Price of Anarchy (PoA), which measures the inefficiency caused by

changing centralised optimal routing to distributed selfish routing.

In particular, this project mainly focuses on the Price of Anarchy for

Games having latency function of the form a + bx4 suggested by the Bureau

of Public Roads. Most of the synthetic data models the traffic flow with

this function so that we can compare the result developed from this project

against real-life driven synthetic data. Previously, researchers have proved a

worst PoA upper bound of 2.151 for this particular set-up.

This project aims to answer a question: Can we achieve a tighter PoA es-

timate beyond the worst case scenario, possibly by utilising more information

in the traffic network? In the project, we explore a couple of different ap-

proaches and show that we could attain a tighter PoA upper bound estimate

by knowing how each agent acts selfishly in a particular traffic network with

extra computational effort.

Apart from establishing a sound theoretical ground, the results are also

applied to real-world Driven Data to show that the estimation indeed pro-

duces an improved upper bound. For instance, in the famous example of

Sioux Falls, we could reduce the PoA estimate from 2.151 to around 1.15.
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1 Introduction

Under the context of traffic routing, selfish decision is often inefficient. As a

driver, we would choose the route which shortens the travel time for self-interest,

but it might not yield the shortest travel time overall from the perspective of a

system. This scenario interests researchers: Can we design a network to minimise

the inefficiency caused by selfish routing?

The loss from changing centralised optimal routing to distributed selfish routing,

also known as the ”Price of Anarchy” (PoA), has been defined and quantified by

Papadimitriou in 2001.[1]. A network with PoA close to 1 would mean that the

network is efficient in the sense that the total cost from selfish routing is similar to

that from optimal routing.

Formally, PoA is defined by the ratio of cost induced by Nash Equilibrium Flow

and by Optimal Flow. Here the cost is a measure of loss when an agent travels

through a road segment, for example travel time or gas consumed. The Nash Equi-

librium Flow is achieved when each agents choose their travel routes based on their

self-interest, whereas the Optimal Flow is achieved when each agents choose the

travel routes which minimises the total cost imposed to the whole system.

Researchers such as Roughgarden and Terdos have shown upper bounds for PoA,

which is also the worst-case analysis, for certain configurations of traffic networks.[2]

Once we know the PoA from a certain traffic network, we could decrease PoA, which

is the loss due to selfish routing, by rerouting the network or to change the cost trav-

elling on some path by marginal cost taxes, or tolls.[3]

However, recent studies involving real-world data show a huge discrepancy be-

tween data-driven PoA and the theoretical upper bound as suggested. In particular,

a study on traffic network in Singapore shows that the actual PoA would be 1.34,

compared to the upper bound of 2.151. This discrepancy would translate into a loss
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of over 730,000 hours per day for commuting in Singapore.[4] Another study focused

on real-world traffic network in Eastern Massachusetts concludes that the average

PoA in a specific day’s afternoon would be 1.5522, compared to the upper bound of

3.299.[5][6]

In practice, most of the real-world and synthetic data assumes that the traffic

flow follows the Bureau of Public Roads functions[7] which has a cost of the form

a + bx4, therefore the theories developed in this report also assumes traffic routing

with this particular configuration.

Since PoA calculated from real-world data represents an average case, where the

PoA from theory gives the worst-case upper bound, a natural question would arise:

What are the fundamental differences between theory and data? In other words,

would it be possible to lower the upper bound of theoretical PoA in order to reduce

the discrepancy between theoretical and exact PoA? This project aims to answer

these questions.

In section 2, we first present technical preliminaries which also serves as the lit-

erature review of previous results. We then develop a sound theoretical framework

which allows further study on real-world data-driven inefficiency analysis from sec-

tion 3 to section 6, and in section 7, results developed from the previous sections

would be implemented into real-world and simulated data and with the data we can

investigate the gap between theoretical and data-driven PoA.
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2 Preliminaries and Models

This section aims to provide a solid background framework via basic definitions

and results which would be useful for the later part of the project. Through pre-

senting the Model, Equilibrium and Optimal Flow, we could define notion of Price

of Anarchy, as well as stating known results from the literature.

2.1 The Model

In this project, we mainly consider the case of non-atomic routing game, which

means there are an infinite amount of agents who controls a negligible amount of the

traffic. This assumption would be realistic on a big network or traffic on a highway.

We define the routing game as follows, with slight modifications from Colini-

Baldeschi et al.[8]: The model is represented by a directed multi-graph G ≡ (V , E),

where V and E are finite vertex set and finite edge set respectively. We further

assume a finite set of origin-destination (O/D) pairs indexed by i ∈ I, and each

index i is associated with a traffic demand mi ≥ 0, which represents the total traffic

from vertex Oi ∈ V to vertex Di ∈ V . This implies that the total traffic inflow,

M =
∑

i∈Im
i ≥ 0.

As a part of routing configuration we also define P i, the set of paths that joins

from Oi to Di, and for each p ∈ P i, p is a sequence of edges. By setting P ≡
⋃
i∈I P i,

we can then define the feasible set of routing flows with

F = {f : P → R+ | ∀i ∈ I :
∑
p∈Pi

fp = mi}

Each f ∈ F would induce a load xe on each edge e ∈ E , and xe =
∑

p3e fp ≥ 0,

with load profile defined as x = (xe)e∈E . Last but not least we define latency func-

tions ce : R+ → R+ for each edge e ∈ E , where ce is a continuous, non-decreasing

and differentiable function. Combining the latency functions and load profile in a

routing game, we can conclude that the latency on edge e ∈ E is ce(xe). By overload-

ing the notation c, we could define the latency function along a path cp : F → R+
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for each path p ∈ P , as well as the latency of a path with cp(f) =
∑

e∈P ce(fe).

Combining the components discussed above, an non-atomic instance of routing

game is defined by the tuple

Γ = (G, I, {mi}i∈I , {P i}i∈I , {ce}e∈E)

with the overall latency C : F → R+ is defined as

C(f) =
∑
p∈P

cp(f)fp =
∑
e∈E

ce(xe)xe

.

To understand how the definition above models traffic routing problem, the fol-

lowing table summarises the purpose of each component in an instance Γ:

Component Representation under traffic routing context

G A directed graph representing road connection between junctions

I Index for each pair of destination and origin (O/D pairs)

mi Traffic flow demand for different O/D pairs representing demand

for commuting from origin A to destination B

P i Paths for different O/D pairs representing the possible routes com-

muting from origin A to destination B

ce Latency function for edges represents the cost when an agent passes

through the road. Some possible measure of cost includes the time

spent travelling through the road segment or the toll of the road.

F Feasible set of routing flow represents a traffic flow that satisfies

traffic flow demands of all agents.
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2.2 Nash Equilibrium and Optimal Flow

Informally, a Nash Equilibrium is achieved in a routing game when each agents

do not have the incentive to change its path. In other words, each agent would

choose the path with the smallest latency from their own perspective.

Definition 2.1 (Nash Equilibrium [3]). A feasible flow f ∈ F for Γ is at Nash

Equilibrium if and only if ∀i ∈ I and ∀p1, p2 ∈ P i with fp1 > 0, cp1(f) ≤ cp2(f).

As for optimal flow, the overall cost C(f) achieves an local minimum if any of

the agents could not lower the overall cost by changing their paths. Described in

economic terms, the increase in marginal cost of switching to another path has to

be higher than the decrease in marginal benefit in staying in the same path for all

possible paths. Moreover the local and global minimum of C(f) are the same since

the local and global minimum of a convex function in convex set are the same.

Formally we could characterise optimal flow of Γ with the following minisation

problem:

Definition 2.2 (Optimal Flow from non-linear program).

minimise
∑
e∈E

ce(xe)xe

subject to: xe =
∑
p3e

fp

f ∈ F (NLP-OF)

For convenience we define `p(f) = cp(f)fp, which is the total latency along path

p suffered by relevant agents, and analogously `e(xe) = ce(xe)xe, the total latency on

edge e, associated with the derivative `′p(f) =
∑

e∈p `
′
e(xe), and d

dxe
`e(xe) = `′e(xe).

Then similar to Definition 2.1, we could express optimal flow in terms of `′p(f):

Theorem 2.3 (Optimal Flow [9]). A feasible flow f ∈ F for Γ is optimal if and

only if ∀i ∈ I and ∀p1, p2 ∈ P i with fp1 > 0, `′p1(f) ≤ `′p2(f).

The following Corollary follows from Definition 2.1 and Theorem 2.3:

8



Corollary 2.4 ([9]). A flow f is feasible for Γ = (G, I, {mi}i∈I , {P i}i∈I , {ce}e∈E) is

optimal if and only if it is at Nash Equilibrium for Γ′ = (G, I, {mi}i∈I , {P i}i∈I , {`′e}e∈E),

and `e(ex) = ce(xe)xe is a convex function for all e ∈ E.

With Corollary 2.4 and Definition 2.2, we can also define Nash Equilibrium as

follows:

Corollary 2.5 (Nash Equilibrium from non-linear program[9]).

minimise
∑
e∈E

∫ xe

0

ce(t) dt

subject to: xe =
∑
p3e

fp

f ∈ F (NLP-NE)

The formula stated above, combined with Definition 2.2, gives us a systematic

way to compute the load profile under Nash Equilibrium and Optimal Flow through

solving non-linear program. Next theorem states the existence and uniqueness of

Nash Equilibria, which is crucial for the definition of Price of Anarchy introduced

in section 2.3.

Theorem 2.6 ([2][9]). An instance Γ admits a feasible flow at least one Nash Equi-

librium. Moreover, if f , f̃ are feasible flows at Nash Equilibrium, then C(f) = C(f̃).

Next theorem is also known as the Variational Inequality Characterisation sug-

gested by Smith. This theorem, combined with Definition 2.8, are vital for the proof

presented in the rest of the report.

Theorem 2.7 (Variational Inequality Characterisation[10]). If an instance Γ have

Equilibrium load profile of xEQ and Optimal Flow load profile of xOPT , then∑
e∈E

ce(x
EQ
e )xEQe ≤

∑
e∈E

ce(x
EQ
e )xOPTe

2.3 Price of Anarchy

In this section, the notion of Price of Anarchy is defined. The Price of Anarchy,

PoA(Γ), is the ratio of overall cost induced by Nash Equilibrium Flow f and overall
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s t

cu(xu) = 1

cl(xl) = xl

Figure 2.1: Pigou’s Example

cost induced by Optimal Flow f ∗ derived from instance Γ defined in Section 2.1.

Formally,

PoA(Γ) =
C(f)

C(f ∗)

And from Theorem 2.6, existence and uniqueness of Nash Equilibria implies the

existence and uniqueness of the Price of Anarchy.

2.4 Examples

This section explores two classic examples proposed by Pigou[11] and Braess[12]

respectively, and they serve as case studies for this section.

2.4.1 Pigou’s Example

Consider the configuration on Figure 2.1 with Γ = (G, I, {mi}i∈I , {P i}i∈I , {ce}e∈E),

where G = (V , E) = ({s, t}, {u, l}), I = {1}, m1 = 1, P1 = {(u), (l)} and

{ce}e∈E = {cu, cl}.

Solving Γ with Corollary 2.5, at Nash Equilibrium xl = 1 and xu = 0, inducing

a total cost C(f) = 1 ∗ 0 + 1 ∗ 1 = 1. On the other hand solving Γ with Definition

2.2 yields xl = xu = 1
2

at Optimal , with the total cost of C(f ∗) = 1 ∗ 1
2

+ 1
2
∗ 1

2
= 3

4
.

Therefore POA(Γ) = 4
3
. In fact the Price of Anarchy for any instance with linear

latency function is upper-bounded by 4
3

,[2] and the result is summerised in the next

section.
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Figure 2.2: Braess’s Paradox

2.4.2 Braess’s Paradox

Another famous example is the Braess’s Paradox with slight modification. This

paradox shows that adding a ”helpful” link might actually negatively affect the

traffic network by increasing the Price of Anarchy. For the configuration in Figure

2.2a the Nash Equilibrium and Optimal Flow have the same load profile x, with

x1 = x2 = x3 = x4 = 1
2

and C(f) = 1.0625. Since the cost under Nash Equilibrium

and Optimal flow are the same, PoA(Γ) = 1.

Now we add a new new edge between vertex u and v with the latency of 0, as

shown in Figure 2.2b. Intuitively adding the new edge would not increase the flow

for Nash Equilibrium since agents can travel from u to v freely without incurring

any additional cost. However if we derive the Nash Equilibrium and Optimal Flow

from Corollary 2.5 and Definition 2.2 respectively, we obtain load profile x1 = x4 =

x3 = 1, x2 = x3 = 0 and total cost C(f) = 2 for Nash Equilibrium, and for Optimal

Flow load profile would be x1 = x4 = 0.20.25, x3 = x2 = 1−0.20.25, x5 = 2 ·0.20.25−1.

Combining the result yields PoA(Γ) ≈ 2.151, which means that adding the new edge

with 0 latency increases the total cost at Nash Equilibrium and hence the Price of

Anarchy, contrary to our intuition. Note that the Price of Anarchy computed is

exactly the upper bound for quartic functions as shown in section 2.5.2.
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2.5 Bounds for Price of Anarchy

Bounding the Price of Anarchy is one of the main issue in traffic routing prob-

lem. Researchers had proposed different upper bounds for specific sets of latency

functions, and in this section the upper bounds are summerised, while providing the

lower bound for completeness.

2.5.1 Lower Bound

The lower bound is trivial: for any Γ, PoA(Γ) ≥ 1 since by definition, total cost

C(f ∗) induced by optimal flow f ∗ ∈ F is minimal by Definition 2.2. In other words

for any f ∈ F , C(f) ≥ C(f ∗), and the result follows.

2.5.2 General Upper Bounds

Roughgarden[13] shows that the upper bound for Price of Anarchy does not

depend on the topology of the network graph configuration, but instead on the class

of the latency functions in the game. Also the analytical formula for upper bounds

are derived in the same paper, summerised in the following table[13]:

Latency Function Class Representation Worst Case PoA

Linear ax+ b 4
3
≈ 1.333

Quadratic ax2 + bx+ c 3
√
3

3
√
3−2 ≈ 1.626

Cubic ax3 + bx2 + cx+ d 4 3√4
4 3√4−3 ≈ 1.896

Quartic ax4 + bx3 + cx2 + dx+ e 5 4√5
5 4√5−4 ≈ 2.151

Polynomials of degree ≤ p
∑p

i=0 aix
i (p+1) p√p+1

(p+1) p√p+1−p = Θ( p
lnp

)

M/M/1 Delay Functions (u− x)−1 1
2
(1 +

√
umin

umin−Rmax
)
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2.5.3 Another perspective of Upper Bound: Smooth Game Condition

Roughgarden has also proposed the notion of Smooth Game Condition, which

leads the way to compute the upper bound of Price of Anarchy with the following

definition:

Definition 2.8 (Smooth Game Condition[14]). A game is (λ, µ)-smooth if the fol-

lowing inequality holds for optimal flow load profile xOPT and Nash Equilibrium load

profile xEQ for some 0 ≤ λ ≤ 1, 0 ≤ µ < 1.∑
e∈E

ce(x
EQ
e )xEQe ≤ λ

∑
e∈E

ce(x
OPT
e )xOPTe + µ

∑
e∈E

ce(x
EQ
e )xEQe

Definition 2.9 (PoA under Smooth Condition[14]). The Price of Anarchy Γ under

Smoothing Condition defined above is

inf{ λ

1− µ
: (λ, µ) such that the game is (λ, µ) smooth}

Definition 2.9 follows directly from definition 2.8, which whenever (λ, µ) is sat-

isfied in definition 2.8 then

PoA(Γ) =

∑
e∈E ce(x

EQ
e )xEQe∑

e∈E ce(x
OPT
e )xOPTe

≤ λ

1− µ

Smooth Game Condition would be one of most important inequality that we

would investigate and bound in order to improve the upper bound of Price of An-

archy in the rest of the report.
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Figure 2.3: Price of Anarchy against traffic flow in Braess’s Paradox

2.6 Real-world Driven Data: Empirical Analysis

In this section we will utilise the tool TrafficAssignment.jl developed by

Kwon[15], which computes the Nash Equilibrium of a routing game condfigura-

tion with polynomial latency function. Since `e(ex) = ce(xe)xe is a convex function

for all polynomial latency function ce, we could use Corollary 2.4 and computes the

Optimal Flow by providing the derivative `′e(ex).

In the rest of this section, two synthetic examples being shown are generated from

the modified version of TrafficAssignment.jl, as well as the data set provided

from the Transportation Network Test Problem (TNTP)[16].

2.6.1 Braess’s Paradox

In this example, we would consider the setting of Braess’s Paradox, i.e. section

2.4.2 and figure 2.2. Figure 2.3 plots Price of Anarchy against different total traffic

inflow and individual traffic demand from node s to node t.

To make sure the graph matches the Price of Anarchy derived on section 2.4.2,

observe that when the total traffic flow in Braess’s Paradox is 1 the Price of Anarchy

approximately equals to 2.151, which matches the result expected. Moreover when

the total traffic flow is very small or very large, the Price of Anarchy is close to

1. This characteristic regarding to the total traffic flow has been formalised by

14



Figure 2.4: Price of Anarchy against traffic flow in Sioux Falls

Colini-Baldeschi et al,[8].

2.6.2 Sioux Falls

This example is a real-world data set from Sioux Falls, USA, which is widely

studied in other papers since it is realistic enough but not too complicated. In this

example there are 24 nodes and 76 edges, and the complete graph is shown in Ap-

pendix A. Same as Braess’s Paradox, a graph of Price of Anarchy against different

traffic flow is plotted as Figure 2.4.

Once again, it can be confirmed that when the traffic is small or large, the Price

of Anarchy tends to 1. Another observation is that the maximum Price of Anarchy

is around 1.05, meanwhile the latency function are quartic functions with the form

of ce(xe) = ae + bex
4 with ae, be ≥ 0 [16], hence having a theoretical upper bound

of 2.151 derived from section 2.5.2. This shows that the gap of theoretical upper

bound and real-world driven data is still huge (2.151 compared to 1.05).
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3 Upper Bound with Smooth Game Condition:

Without prior knowledge

In the rest of the report we would assume the traffic flow follows the cost function

suggested by the Bureau of Public Roads[7], i.e. ce(xe) = ae + bex
4
e, since most of

the real-world model uses this set of cost function as their configuration, we could

then evaluate the theories developed under this assumption against real-world data.

In this section we aim to show that under Smooth Game Condition defined in

Definition 2.8 we can achieve the same upper bound of Price of Anarchy in Section

2.5.2, i.e. PoA(Γ) ≤ 1/(1− 4
51.25

) = γ, without using extra information. This result

matches our expectation since we have constructed an example where PoA(Γ) is ex-

actly equal to γ in section 2.4.2. We would also show that PoA(Γ) < 1/(1− 4
51.25

) = γ

under certain choice of cost functions.

Before showing the main results, we shall prove the following inequality as a

lemma.

Lemma 3.1. For a game with cost functions ce(xe) = ae + bex
4
e,

(ce(x
EQ
e )− ce(xOPTe ))xOPTe ≤ 4

51.25
ce(x

EQ
e )xEQe

Proof. Consider the following 4 cases:

Case 1: The inequality holds when xEQe = 0 since it implies that ce(x
EQ
e ) ≤ ce(x

OPT
e )

and hence

(ce(x
EQ
e )− ce(xOPTe ))xOPTe ≤ 0 =

4

51.25
ce(x

EQ
e )xEQe

Case 2: The inequality also holds when ce(x
EQ
e ) = 0, which implies that

−ce(xOPTe )xOPTe ≤ 0 =
4

51.25
ce(x

EQ
e )xEQe

Case 3: The inequality holds when be = 0:

(ae − ae)xOPTe = 0 ≤ 4

51.25
aex

EQ
e
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Case 4: Assume that ce(x
EQ
e )xEQe 6= 0 and be 6= 0, showing the above inequality is

equivalent to show that

(ce(x
EQ
e )− ce(xOPTe ))xOPTe

ce(x
EQ
e )xEQe

≤ 4

51.25
(1)

Now we would like to maximise the numerator with respect to xEQe in order to bound

the expression on the left. Consider the following expression:

A = (ce(x
EQ
e )− ce(xOPTe ))xOPTe

= ((ae + be(x
EQ
e )4 − (ae + be(x

OPT
e )4)xOPTe

= (be(x
EQ
e )4 − be(xOPTe )4)xOPTe

Differentiate A with respect to xOPTe yields

dA

dxOPTe

= be(x
EQ
e )4 − 5be(x

OPT
e )4 (2)

Setting (2) to 0 yields the extrema of:

xOPT∗e =
xEQe
50.25

(3)

assuming that be 6= 0. To show that xOPT∗e attains minimum, consider the second

derivative of A: ( d

dxOPTe

)2
A
∣∣∣
xOPT
e =xOPT∗

e

= −20be(x
OPT∗
e )3 ≤ 0

Hence the maximum of A is

A′ =
4

51.25
be(x

EQ
e )5

And the maximum value of the left side expression in (1) is

4

51.25

be(x
EQ
e )5

(ae + be(x
EQ
e )4)xEQe

≤ 4

51.25

since be(x
EQ
e )5/(ae + be(x

EQ
e )4)xEQe ≤ 1 for all ae, x

EQ
e ≥ 0, be > 0. �
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The following theorem utilises the definition of Smooth Game Condition (Defi-

nition 2.8), which shows that the upper bound of Price of Anarchy of cost functions

in the form of ce(xe) = ae + bex
4
e.

Theorem 3.2. For a game with cost functions ce(x) = ae + bex
4
e, PoA(Γ) ≤ γ ≈

2.151 under Smooth Game Condition (Definition 2.8).

Proof.∑
e∈E

ce(x
EQ
e )xEQe = λ

∑
e∈E

ce(x
OPT
e )xOPTe +

∑
e∈E

ce(x
EQ
e )xEQe − λ

∑
e∈E

ce(x
OPT
e )xOPTe

= λ
∑
e∈E

ce(x
OPT
e )xOPTe + (1− λ)

∑
e∈E

ce(x
EQ
e )xEQe

+ λ(
∑
e∈E

ce(x
EQ
e )xEQe −

∑
e∈E

ce(x
OPT
e )xOPTe )

≤ λ
∑
e∈E

ce(x
OPT
e )xOPTe + (1− λ)

∑
e∈E

ce(x
EQ
e )xEQe

+ λ(
∑
e∈E

(ce(x
EQ
e )− ce(xOPTe ))xOPTe ) (4)

≤ λ
∑
e∈E

ce(x
OPT
e )xOPTe + (1− λ)

∑
e∈E

ce(x
EQ
e )xEQe

+
4

51.25
λ
∑
e∈E

ce(x
EQ
e )xEQe (5)

= λ
∑
e∈E

ce(x
OPT
e )xOPTe + (1− λ+

4

51.25
λ)
∑
e∈E

ce(x
EQ
e )xEQe

⇒ λ(1− 4

51.25
)
∑
e∈E

ce(x
EQ
e )xEQe ≤ λ

∑
e∈E

ce(x
OPT
e )xOPTe

⇒ (1− 4

51.25
)
∑
e∈E

ce(x
EQ
e )xEQe ≤

∑
e∈E

ce(x
OPT
e )xOPTe

⇒ PoA(Γ) =

∑
e∈E ce(x

EQ
e )xEQe∑

e∈E ce(x
OPT
e )xOPTe

≤ 1

1− 4
51.25

= γ ≈ 2.151

Where inequality (4) arrives from theorem 2.7, and inequality (5) from lemma 3.1.

�
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Notice that Pigou’s Example with one edges having cost function ce(xe) = 1 and

another with ce(xe) = x4e leads to the Price of Anarchy of 2.151, which matches the

upper bound shown above.

The following corollary shows that if we exclude constant cost functions in the

game, i.e. cost function in the form of ce(x) = ae, then Price of Anarchy PoA(Γ) <

γ ≈ 2.515.

Corollary 3.3. For a game with cost functions ce(xe) = ae+bex
4
e excluding constant

cost functions ce(xe) = ae, i.e. be 6= 0 for all e ∈ E, PoA(Γ) < γ under Smooth

Game Condition (Definition 2.8).

Proof. By way of contradiction, assume that there are some games which excludes

the constant cost functions but having PoA(Γ) = γ ≈ 2.151, then from Theorem 3.2

we have to show equality instead of inequality in (4) and (5).

In particular consider equality (5), which is we would like to prove∑
e∈E

(ce(x
EQ
e )− ce(xOPTe ))xOPTe =

4

51.25

∑
e∈E

ce(x
EQ
e )xEQe

But then it implies to prove

(ce(x
EQ
e )− ce(xOPTe ))xOPTe =

4

51.25
ce(x

EQ
e )xEQe (6)

individually since from lemma 3.1 (ce(x
EQ
e )− ce(xOPTe ))xOPTe ≤ 4

51.25
ce(x

EQ
e )xEQe for

all e ∈ E .

To show equality (6) we can divide it into cases analogous to lemma 3.1:

Case 1: When xEQe = 0, equality (6) then becomes

−be(xOPTe )5 = 0

by substituting ce(xe) = ae+ be(xe)
4 and xEQe = 0, hence in this case xOPTe = 0 since

be 6= 0 from the assumption.
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Case 2: When ce(x
EQ
e ) = 0, then there are two possibilities:

Case 2.1: ce(xe) = 0 for all xe ≥ 0, but this is not possible from the

assumption be 6= 0.

Case 2.2: ce(xe) = be(xe)
4 and xEQe = 0, then it is the same as Case 1.

Case 3: be = 0 is not possible from the assumption. Note that if be = 0 is al-

lowed then (ce(x
EQ
e )− ce(xOPTe ))xOPTe = 0 for all xOPTe ≥ 0, which implies we could

choose any xOPTe with xEQe = 0 and it still satisfy the equality.

Case 4: A necessary condition for equality (6) to hold is when xOPTe attains max-

imum in (ce(x
EQ
e ) − ce(x

OPT
e ))xOPTe , i.e. the condition in equation (3). In other

words, xOPT∗e = xEQe /50.25.

Combining conditions in Case 1 and Case 4,

xOPTe =
xEQe
50.25

(7)

for all e ∈ E would be the necessary condition in order to achieve equality (6).

But this constraint leads to a contradiction. Notice that equation (7) implies that

xOPTe < xEQe when xEQe 6= 0 and xOPTe = xEQe = 0 when xEQe = 0.

By the definition of Nash Equilibrium, for all paths p1, p2 ∈ P i with flow fp1 > 0,

cp1(f) ≤ cp2(f), which is,∑
e∈p1

(ae + be(x
EQ
e )4) ≤

∑
e∈p2

(ae + be(x
EQ
e )4)

Also by the definition of Optimal Flow, for all paths p1, p2 ∈ P i with flow fp1 > 0,

`′p1(f) ≤ `′p2(f), which is,∑
e∈p1

(ae + 5be(x
OPT
e )4) ≤

∑
e∈p2

(ae + 5be(x
OPT
e )4) (8)
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Substituting xOPTe from equation (7) into equation (8),∑
e∈p1

(ae + 5be(
xEQe
50.25

)4) ≤
∑
e∈p2

(ae + 5be(
xEQe
50.25

)4)

⇒
∑
e∈p1

(ae + be(x
EQ
e )4) ≤

∑
e∈p2

(ae + be(x
EQ
e )4)

which is exactly the equation for Nash Equilibrium. This implies that flow xOPTe

is also a valid Nash Equilibrium flow, and since xOPTe < xEQe , that contradicts the

definition of Nash Equilibrium on xEQe since xEQe is not the minimum flow for Nash

Equilibrium. �
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4 Smooth Game Condition: Upper Bounded by

minimum Equilibrium Flow with constraints

In this section we aim to build a tighter bound with the information of the nor-

malised minimum Equilibrium Flow x′EQmin, together with certain constraints (”the

constraints”) under Smooth Game Condition (Definition 2.8). Combining these two

elements we could construct an improved upper bound. This idea is originally pre-

sented by Correa et al. [17] and this section generalises the proof to Smooth Game

Condition.

In particular the constraints are

• constant cost functions of form ce(xe) = ae are not allowed, except the function

ce(xe) = 0.

• edges with equilibrium flow xEQe = 0 are not allowed, except the case where

xOPTe = 0 or the cost function is in the form of ce(xe) = bex
4
e.

And normalised Equilibrium Flow x′e is defined as follows:

Definition 4.1 (Normalised Equilibrium Flow). For all edges e ∈ E with cost func-

tions ce(xe) = ae + bex
4
e, the normalised Equilibrium Flow x′e is

x′e =
xe
a′0.25e

where

a′e =
ae
be

Note that in certain case x′e can be 0 or undefined.

Before showing the main results, we shall prove the following inequality as a

lemma.
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Lemma 4.2. For a game with cost functions ce(xe) = ae + bex
4
e with the constraints

described above,

(ce(x
EQ
e )− λce(xOPTe ))xOPTe ≤ 4

51.25λ0.25
ce(x

EQ
e )xEQe

for all λ satisfying 0.2 < 1 − {[(1 + (x′EQe )4)x′EQe ]0.8 − (x′EQe )4} ≤ λ ≤ 1, where

x′EQe = xEQe /a′0.25e , and a′e = ae/be. Otherwise if x′EQe is undefined or x′EQe = 0, then

the above inequality is satisfied for all 0 < λ ≤ 1.

Proof. Consider the following 4 cases:

Case 1: xEQe = 0 is not allowed from the constraints. On the contrary if we

allow xEQe = 0 to exist then we have to prove

(ae(1− λ)− λbe(xOPTe )4)xOPTe ≤ 0

which does not always hold unless λ = 1, xOPTe = 0 or ae = be = 0.

Case 2: When ce(x
EQ
e ) = 0, then there are two possibilities:

Case 2.1: ce(xe) = 0 for all xe ≥ 0, then

0 = (0− 0)xOPTe ≤ 4

51.25λ0.25
0 ∗ xEQe = 0

which holds for all λ. In this case x′EQe is undefined.

Case 2.2: ce(xe) = be(xe)
4 and xEQe = 0, then

−λbe(xOPTe )5 ≤ 4

51.25λ0.25
0 ∗ xEQe = 0

which holds for all λ. In this case x′EQe = 0.

Case 3: be = 0 is not allowed from the constraints. If we allow be = 0 then

we have to prove

ae(1− λ)xOPTe ≤ 4

51.25λ0.25
be(x

EQ
e )5
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Figure 4.5: Illustration of Lemma 4.2

which does not hold generally, especially then xOPTe >> xEQe .

Case 4: Otherwise assume that ce(x
EQ
e )xEQe 6= 0 and be 6= 0, showing the above

inequality is equivalent to show that

(ce(x
EQ
e )− λce(xOPTe ))xOPTe

ce(x
EQ
e )xEQe

≤ 4

51.25λ0.25

⇔ [ae(1− λ) + be(x
EQ
e )4 − λbe(xOPTe )4]xOPTe

(ae + be(x
EQ
e )4)xEQe

≤ 4

51.25λ0.25

⇔ [a′e(1− λ) + (xEQe )4 − λ(xOPTe )4]xOPTe

(a′e + (xEQe )4)xEQe
≤ 4

51.25λ0.25
(9)

where a′e = ae/be and be 6= 0 from the assumption.

Using similar approach from lemma 3.1, we have to maximise the numerator with

respect to xEQe . Graphically, we would like to maximise the area of the red rectan-

gle in Figure 4.5 with respect to the green rectangle. Now consider the following

expression:

A = [a′e(1− λ) + (xEQe )4 − λ(xOPTe )4]xOPTe

Differentiate A with respect to xOPTe while fixing λ and xEQe yields

dA

dxOPTe

= a′e(1− λ) + (xEQe )4 − 5λ(xOPTe )4 (10)
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Setting (10) to 0 yields the extrema of:

xOPT∗e =
[
a′e(

1− λ
5λ

) + (
1

5λ
)(xEQe )4

]0.25
(11)

To show that xOPT∗e attains minimum, consider the second derivative of A:( d

dxOPTe

)2
A
∣∣∣
xOPT
e =xOPT∗

e

= −20λ(xOPT∗e )3 ≤ 0

Hence the maximum of A is

A′ =
4

51.25λ0.25
[a′e(1− λ) + (xEQe )4]1.25

And the maximum value of the left side expression in (9) is

4

51.25λ0.25

( [a′e(1− λ) + (xEQe )4]1.25

(a′e + (xEQe )4)xEQe

)
(12)

⇔ 4

51.25λ0.25

( [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
(13)

with x′EQe = xEQe /a′0.25e and a′e 6= 0.

Case 4.1: If a′e = 0, expression (12) becomes

4

51.25λ0.25

((xEQe )5

(xEQe )5

)
=

4

51.25λ0.25

In this case inequality (9) holds trivially and x′EQe is undefined.

Case 4.2: Otherwise combining (9) and (13), we need to show that

4

51.25λ0.25

( [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
≤ 4

51.25λ0.25
(14)

In other words, ( [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
︸ ︷︷ ︸

f(λ,x′EQ
e )

≤ 1

⇒ λ ≥ 1− {[(1 + (x′EQe )4)x′EQe ]0.8 − (x′EQe )4} (15)

From Figure 4.6, it can be observed that there is one root that satisfy the equation

f(λ, x′EQe ) = 1 for all 0.2 < λ ≤ 1. Moreover if x0 is the root of f(λ, x′EQe ) = 1 then

f(λ, x) < 1 for all x > x0. On the other hand, if λ ≤ 0.2 then for all x′EQe we have

f(λ, x′EQe ) > 1. �
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Figure 4.6: Graph of f(λ, x′EQe ) under different λ

Lemma 4.3. For a game with cost functions ce(xe) = ae + bex
4
e with the constraints

described above,∑
e∈E

(ce(x
EQ
e )− λce(xOPTe ))xOPTe ≤ 4

51.25λ0.25

∑
e∈E

ce(x
EQ
e )xEQe

for all λ satisfying 0.2 < 1 − {[(1 + (x′EQmin)4)x′EQmin]0.8 − (x′EQmin)4} ≤ λ ≤ 1, where

x′EQmin = min
e
x′EQe , x′EQe = xEQe /a′0.25e and a′e = ae/be, excluding the case where x′EQe

is undefined or x′EQe = 0.

Proof. The idea is to select a range of λ such that for all e ∈ E the inequality

(ce(x
EQ
e )− λce(xOPTe ))xOPTe ≤ 4

51.25λ0.25
ce(x

EQ
e )xEQe (16)

holds. If we could find such range of λ, then∑
e∈E

(ce(x
EQ
e )− λce(xOPTe ))xOPTe ≤ 4

51.25λ0.25

∑
e∈E

ce(x
EQ
e )xEQe (17)

also holds.

From lemma 4.2, inequality (16) holds when

λe ≥ 1− {[(1 + (x′EQe )4)x′EQe ]0.8 − (x′EQe )4} = g(x′EQe )
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Figure 4.7: Graph of g(x′EQmin) against x′EQmin

for all e ∈ E . Figure 4.7 plots the graph of g(x′EQe ) against x′EQe . Since g(x′EQe ) is a

decreasing function, we can choose x′EQmin so that

λ ≥ 1− {[(1 + (x′EQmin)4)x′EQmin]0.8 − (x′EQmin)4}

with this range of λ, inequality (16) holds for all e ∈ E and hence inequality (17)

also holds.

Also from lemma 4.2 when x′EQe is undefined or x′EQe then inequality (16) holds

for all λ, so it is excluded in finding bounds for λ.

�

Theorem 4.4. For a game with cost function ce(xe) = ae+bex
4
e with the constraints

described above,

PoA(Γ) ≤ λ∗

1− 4
51.25λ∗0.25

where λ∗ = 1− {[(1 + (x′EQmin)4)x′EQmin]0.8 − (x′EQmin)4.
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Proof.∑
e∈E

ce(x
EQ
e )xEQe ≤

∑
e∈E

ce(x
EQ
e )xOPTe

=λ
∑
e∈E

ce(x
OPT
e )xOPTe +

∑
e∈E

(ce(x
EQ
e )− λce(xOPTe ))xOPTe

≤λ
∑
e∈E

ce(x
OPT
e )xOPTe +

4

51.25λ0.25

∑
e∈E

ce(x
EQ
e )xEQe (18)

⇒ (1− 4

51.25λ0.25
)
∑
e∈E

ce(x
EQ
e )xEQe ≤ λ

∑
e∈E

ce(x
OPT
e )xOPTe

⇒ PoA(Γ) =

∑
e∈E ce(x

EQ
e )xEQe∑

e∈E ce(x
OPT
e )xOPTe

≤ λ

1− 4
51.25λ0.25

= h(λ) (19)

From lemma 4.3, inequality (18) holds if

0.2 < 1− {[(1 + (x′EQmin)4)x′EQmin]0.8 − (x′EQmin)4} ≤ λ ≤ 1 (20)

We now need to find the minimal value of h(λ) with constraint (20). Figure

4.8 shows the graph of h(λ) against λ. Since h(λ) is an increasing function, we

have to take λ as small as possible while satisfying constraint (20). Hence λ∗ =

1− {[(1 + (x′EQmin)4)x′EQmin]0.8 − (x′EQmin)4 yields the minimal h(λ∗).

Substituting λ = λ∗ into inequality (19) gives the desired statement in the theo-

rem. �

The following corollary shows that on certain extra condition, Price of Anarchy

PoA(Γ) < λ/(1− 4
51.25λ0.25

).

Corollary 4.5. For a game with cost function ce(xe) = ae+bex
4
e with the constraints

described above, if there exist a pair of e1, e2 ∈ E, e1 6= e2, satisfying the following

condition:

• ce1(xe1)xe1 6= 0 and ce2(xe2)xe2 6= 0

• ae1 6= 0 and ae2 6= 0

• x′EQe1
6= x′EQe2
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Then

PoA(Γ) <
λ

1− 4
51.25λ0.25

Proof. The first and second conditions alongside with the constraints excludes Case

1, 2, 3 in lemma 4.3, so we only have to consider case 4.

From Figure 4.6 we can see that f(λ, x′EQmin) = 1 only has one root for 0.2 < λ ≤ 1.

Moreover for x > x′EQmin, f(λ, x) < 1. From condition 3 we know that at least one of

the edges x′EQe > x′EQmin. Therefore we can replace ≤ with < in inequality (18) from

Theorem 4.4. Hence inequality (19) becomes

PoA(Γ) <
λ

1− 4
51.25λ0.25

�

To conclude, under certain restrictions we could lower the upper bound to

PoA(Γ) ≤ λ/(1− 4
51.25λ0.25

) where λ depends on the normalised minimum flow in

the game. An interesting observation is that the choice of λ according to minimum

flow represents the worst case scenario, but for most of the case it is entirely possible

to choose a lower λ and inequality (18) still holds. We would investigate this idea

further in section 6. In next section we would try to find another way of bounding

which depends on the maximum flow in the game.
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5 Smooth Game Condition: Upper Bounded by

maximum Equilibrium Flow with constraints

In this section we would like to find a lower bound that depends on the normalised

maximum flow instead of normalised minimum flow as proved in the previous sec-

tion. Different from last section, we do not impose any constraints on the type of

cost function or equilibrium. In other words this result is applicable to all configu-

ration of games.

Before getting to the main results, we would like to introduce a new notation η.

This idea is originally presented by Correa et al. [17] and this section generalises

the proof to Smooth Game Condition, and to select the optimal η which are not

mentioned in Correa et al.’s paper.

Lemma 5.1. For a game with cost function ce(xe) = ae + bex
4
e, there exist some

0 ≤ η ≤ 1 such that ce(0) ≥ ηce(x
EQ
e ). Then (ae+be(x

EQ
e )4)xEQe ≥ be(x

EQ
e )5/(1−η).

Proof. Since ce(x
EQ
e ) ≤ ce(0), it is easy to see that there exist some η such that

ce(0) ≥ ηce(x
EQ
e ) and hence ae ≥ η(ae + be(x

EQ
e )4).

Then,

(ae + be(x
EQ
e )4)xEQe = aex

EQ
e + be(x

EQ
e )5

≥ η(ae + be(x
EQ
e )4)xEQe + be(x

EQ
e )5

⇒ (1− η)(ae + be(x
EQ
e )4)xEQe ≥ be(x

EQ
e )5

⇒ (ae + be(x
EQ
e )4)xEQe ≥ be(x

EQ
e )5

1− η

�
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Lemma 5.2. For a game with cost function ce(xe) = ae+bex
4
e with η ≤ 1/(1 + (x′EQmax)

4),

then
∑

e∈E(ae + be(x
EQ
e )4)xEQe ≥

∑
e∈E be(x

EQ
e )5/(1 − η), where x′EQmax = max

e
x′EQe

excluding the case when x′EQe is undefined or x′EQe = 0, x′EQe = xEQe /a′0.25e and

a′e = ae/be.

Proof. Consider the following cases with the inequality ce(0) ≥ ηce(x
EQ
e ):

Case 1: When be = 0, then ae ≥ η(ae + 0(xEQe )4) holds for all 0 < η ≤ 1, this

case corresponds to the situation when x′EQe is undefined.

Case 2: When x′EQe = 0, then ae ≥ η(ae + be(0)4) holds for all 0 < η ≤ 1,

this case corresponds to the situation when x′EQe = 0.

Case 3: Otherwise for each edge e ∈ E ,

ae ≥ ηe(ae + be(x
EQ
e )4)

⇒ηe ≤
ae

ae + be(x
EQ
e )4

⇒ηe ≤
1

1 + (x′EQe )4

Now we have to find η such that η ≤ 1/(1 + (x′EQe )4) for all e ∈ E . Since

1/(1 + (x′EQe )4) decreases as x′EQe increases, so using η ≤ 1/(1 + (x′EQmax)
4) as the

bound would make sure that all edges satisfy the inequality.

From lemma 5.1, all edges e ∈ E satisfy the inequality

(ae + be(x
EQ
e )4)xEQe ≥ be(x

EQ
e )5

1− η

and hence ∑
e∈E

(ae + be(x
EQ
e )4)xEQe ≥

∑
e∈E be(x

EQ
e )5

1− η

�

Lemma 5.3. For a game with cost functions ce(xe) = ae + bex
4
e,

(ce(x
EQ
e )− λce(xOPTe ))xOPTe ≤ 4

51.25
be(x

EQ
e )5

where λ = 1.
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Proof. Consider the following 3 cases:

Case 1: If xEQe = 0 then

−be(xOPTe )4xOPTe ≤ 4

51.25
(be ∗ (0)5) = 0

which always hold.

Case 2: If be = 0 then

0 ≤ 4

51.25
(0 ∗ (xEQe )5) = 0

which always hold.

Case 3: Otherwise we would use the same approach in case 4 of lemma 3.1, then

eventually we need to show that

4

51.25

( [(1− λ) + (x′EQe )4]1.25

(x′EQe )4x′EQe

)
︸ ︷︷ ︸

f(λ,x′EQ
e )

≤ 4

51.25

Note that we would like to find a λ such that f(λ, x′EQe ) ≤ 1. But since for all

x′EQe ∈ R+, f(λ, x′EQe ) = 1 when λ = 1, and f(λ, x′EQe ) > 1 when 0 < λ < 1, the

only choice for λ is 1. �

Theorem 5.4. For a game with cost function ce(xe) = ae + bex
4
e,

PoA(Γ) ≤ 1

1− (1− η∗) 4
51.25

where η∗ = 1/(1 + (x′EQmax)
4).
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Proof.∑
e∈E

ce(x
EQ
e )xEQe ≤

∑
e∈E

ce(x
EQ
e )xOPTe

=λ
∑
e∈E

ce(x
OPT
e )xOPTe +

∑
e∈E

(ce(x
EQ
e )− λce(xOPTe ))xOPTe

=λ
∑
e∈E

ce(x
OPT
e )xOPTe +

∑
e∈E(ce(x

EQ
e )− λce(xOPTe ))xOPTe∑
e∈E ce(x

EQ
e )xEQe

∑
e∈E

ce(x
EQ
e )xEQe

≤λ
∑
e∈E

ce(x
OPT
e )xOPTe

+ (1− η)

∑
e∈E(ce(x

EQ
e )− λce(xOPTe ))xOPTe∑
e∈E be(x

EQ
e )5

∑
e∈E

ce(x
EQ
e )xEQe

(21)

≤λ
∑
e∈E

ce(x
OPT
e )xOPTe + +(1− η)

4

51.25

∑
e∈E

ce(x
EQ
e )xEQe (22)

⇒ (1− (1− η)
4

51.25
)
∑
e∈E

ce(x
EQ
e )xEQe ≤ λ

∑
e∈E

ce(x
OPT
e )xOPTe

⇒ PoA(Γ) =

∑
e∈E ce(x

EQ
e )xEQe∑

e∈E ce(x
OPT
e )xOPTe

≤ 1

1− (1− η) 4
51.25

= h(η)

where inequality (21) comes from lemma 5.2, and inequality (22) comes from lemma

5.3, with summing the inequality in the lemma term by term.

Next we have to find η such that it maximises the Price of Anarchy, meanwhile

satisfying the condition in lemma 5.2, which is 0 ≤ η ≤ 1/(1 + (x′EQmax)
4). Since h(η)

is a decreasing function as illustrated in Figure 5.9, in order to minimise h(η) we

need to choose η as large as possible. Hence η∗ = 1/(1 + (x′EQmax)
4). �

To conclude, if we know the normalised maximum flow then we could easily

obtain a better lower bound as suggest in theorem 5.4. However similar to the

conclusion in section 4, this choice of η represents a worst case scenario, where we

could actually take another better η while the inequality (21) still holds. These ideas

will be formally presented in the next section.
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Figure 5.9: Graph of h(η) against η

6 Smooth Game Condition: A better Upper Bound

from knowing all Equilibrium Flows

On previous sections the upper bound of Price of Anarchy is determined by the

maximum or minimum Equilibrium Flow, however in reality we have to compute

Equilibrium Flows for all edges in order to determine to maximum and minimum

flow and therefore we are interested in using Equilibrium Flow from all edges to

build a tighter bound.

This section is separated into two parts: Bound improvement from Section 4 and

improvement from Section 5. The main difference between these two subsections

are that subsection 6.1 requires the constraint on the game introduced in section 4

but no extra constraint is needed in subsection 6.2.
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6.1 Further improved bound from Section 4

The idea of Theorem 6.1 is to amortise inequality (18) so that instead of choosing

the worst case λ which depends on the minimal (normalised) Equilibrium Flow, we

now allows more flexibility for λ while inequality (18) still holds.

Theorem 6.1. For a game with cost function ce(xe) = ae+bex
4
e with the constraints

described in section 3,

PoA(Γ) ≤ λ∗

1− 4
51.25λ∗0.25

where λ∗ is given by the following optimisation formula:

min
λ

λ (23)

s.t.
∑
e∈E3

(
1− [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
ce(x

EQ
e )xEQe ≥ 0

0.2 ≤ λ ≤ 1

where edges E are partitioned in the following way:

• E1 is the set of edges with ce(x
EQ
e ) = 0 (Case 2 in lemma 4.2)

• E2 is the set of edges with ce(x
EQ
e ) 6= 0, be 6= 0 and ae = 0 (Case 4.1 in lemma

4.2)

• E3 is the set of edges with ce(x
EQ
e ) 6= 0, be 6= 0 and ae 6= 0 (Case 4.2 in lemma

4.2)
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Proof. Consider a similar derivation from theorem 4.4. In particular consider in-

equality (18):∑
e∈E

(ce(x
EQ
e )− λce(xOPTe ))xOPTe

≤
∑

e∈E2∪E3

(ce(x
EQ
e )− λce(xOPTe ))xOPTe (24)

=
∑

e∈E2∪E3

(ce(x
EQ
e )− λce(xOPTe ))xOPTe

ce(x
EQ
e )xEQe

ce(x
EQ
e )xEQe

=
∑

e∈E2∪E3

ae(1− λ) + be(x
EQ
e )4 − λbe(xOPTe )4

(ae + be(x
EQ
e )4)xEQe

ce(x
EQ
e )xEQe

=
∑

e∈E2∪E3

a′e(1− λ) + (xEQe )4 − λ(xOPTe )4

(a′e + (xEQe )4)xEQe
ce(x

EQ
e )xEQe

≤ 4

51.25λ0.25

(∑
e∈E3

[a′e(1− λ) + (xEQe )4]1.25

(a′e + (xEQe )4)xEQe
ce(x

EQ
e )xEQe +

∑
e∈E2

ce(x
EQ
e )xEQe

)
(25)

=
4

51.25λ0.25

(∑
e∈E3

[(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

ce(x
EQ
e )xEQe +

∑
e∈E2

ce(x
EQ
e )xEQe

)
≤ 4

51.25λ0.25

∑
e∈E2∪E3

ce(x
EQ
e )xEQe (26)

=
4

51.25λ0.25

∑
e∈E

ce(x
EQ
e )xEQe

Inequality (24) comes from Case 2 in 4.2, and inequality (25) arrives from the max-

imisation of the numerator shown from expression (12) as well as Case 4.1, and

we would also like to make inequality (26) holds such that inequality (18) holds.

Making (25) holds is equivalent to the following, noticing that E2 and E3 are disjoint

sets: ∑
e∈E3

ce(x
EQ
e )xEQe ≥

∑
e∈E3

[(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

ce(x
EQ
e )xEQe

∑
e∈E3

(
1− [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
ce(x

EQ
e )xEQe ≥ 0 (27)

Also from Figure 4.6 and Smooth Game Condition, we know that 0.2 < λ ≤ 1

and Figure 4.8 we are minimising λ in order to lower the upper bound of Price of

Anarchy, hence the optimisation formula follows.
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Notice that the function

fe(λ) =
(

1− [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
ce(x

EQ
e )xEQe

is strictly increasing with respect to λ and since the sum of increasing functions is

also an strictly increasing function, therefore

f(λ) =
∑
e∈E3

(
1− [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
ce(x

EQ
e )xEQe

is an increasing function. Now the optimisation formula (23) turns into solving λ

for the following equality:

f(λ) =
∑
e∈E3

(
1− [(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

)
ce(x

EQ
e )xEQe = 0

Now since f(λ) is an strictly increasing function, with f(0.2) < 0 and f(1) > 0

shown from Figure 4.6, we can then find f(λ∗) = 0 for some unique 0.2 < λ∗ ≤ 1

via Newton’s method, with initial value of λ = (1 + 0.2)/2 = 0.6 and

f ′(λ) =
∑
e∈E3

[(1− λ) + (x′EQe )4]0.25

(1 + (x′EQe )4)x′EQe

ce(x
EQ
e )xEQe

On the other hand if E3 = ∅, then optimisation formula (23) becomes minimising λ

subject to 0 ≤ 0, which always holds. Therefore in this case we could select λ = 0.2

in order to push down upper bound for Price of Anarchy as much as possible ac-

cording to Figure 4.8.

An interesting point to observe is that when λ = 0.2, PoA(Γ) ≤ 1. On the other

hand if E3 = ∅, the only cost functions allowed are ce(xe) = 0 or ce(xe) = bex
4
e, and

in this situation the exact PoA(Γ) is 1.

Finally the Price of Anarchy is given with the same equation same as from Theorem

4.4, i.e.

PoA(Γ) ≤ λ∗

1− 4
51.25λ∗0.25

�
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Figure 6.10: Illustration of optimisation formula (23)

As an illustration of optimisation formula (23), consider Figure 6.10 which plots

the function

g(λ, x′EQe ) =
[(1− λ) + (x′EQe )4]1.25

(1 + (x′EQe )4)x′EQe

and the optimisation formula aims to find an optimal value for λ such that the

magnitude of the blue arrows cancel each other, where the magnitude has been

scaled by a factor of ce(xe)xe.

6.2 Further improved bound from Section 5

The following Theorem rephrases Theorem 5.4 with a replacement of worst case

η with an exact value of η.

Theorem 6.2. For a game with cost function ce(xe) = ae + bex
4
e,

PoA(Γ) ≤ 1

1− α 4
51.25

where α = 1− η =
∑

e∈E be(x
EQ
e )5/

∑
e∈E(ae + be(x

EQ
e )4)xEQe .

Proof. Replace inequality (21) with an equality by setting

1− η =

∑
e∈E be(x

EQ
e )5∑

e∈E(ae + be(x
EQ
e )4)xEQe

= α

and the bound of PoA(Γ) comes from the rest of the proof 5.4. �
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6.3 Summary

By combining section 6.1 and section 6.2, we can conclude the following:

Theorem 6.3. For any game with cost function ce(xe) = ae + bex
4
e,

PoA(Γ) ≤ γ2

And for a game with cost function ce(xe) = ae + bex
4
e with constraints in section 4

being satisfied, then

PoA(Γ) ≤ min(γ1, γ2)

where γ1 is the estimate computed from Theorem 6.1 and γ2 is the estimate computed

from Theorem 6.2.
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7 Applying Upper Bound to Real-world Driven

Data

In this section, we would apply the findings from Section 3 to Section 6 into

Real-world Driven Data from the Transport Network Test Problem(TNTP)[16]. We

will then compare the exact Price of Anarchy against the Upper Bound this report

proposes, as well as the theoretical Upper Bound of 2.151. Last but not least, we

would provide some analysis of the results.

7.1 Methodology

In order to estimate the upper bound the results in section 6, in particular

Theorem 6.3 will be considered. The reason of not using results from Section 3 to

Section 5 are as follows:

• Section 3 does not provide any improvement on the Upper Bound, i.e. the

estimation is still 2.151.

• In order to calculate the minimum and maximum modified Equilibrium Flow

required in Section 4 and 5 respectively, we need to know all Equilibrium Flow

in the Game. Hence we can apply all Equilibrium Flows to Section 6 directly

without extra computing work.

• Section 6 provides a better bound than Section 4 and Section 5 since Section

4 and 5 assumes a worst case scenario for the choice of λ and η

Next we would like to examine how upper bounds changes with different traffic

flows under the same Game Configuration. Hence we will plot the estimate Price of

Anarchy against different traffic inflow, which is scaled up or down proportionally

to the original flow.
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Figure 7.11: Exact and Estimated PoA against traffic flow in Braess’s Paradox

Figure 7.12: Estimated PoA with different approach of bounding in Braess’s Paradox

7.2 Braess’s Paradox revisited

Consider the example of Braess’s Paradox with Augmented Configuration, as

shown in Figure 2.2b. We would now apply the upper bound into this Configu-

ration under different traffic flows, as shown in Figure 7.11. Note that we could

not use the result γ1 in Theorem 6.3 since the Configuration contains cost function

c3(x3) = c2(x2) = 1, which violates first constraint stated in Section 4.
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Observe that the upper bound computed from Section 6.2 stays flat when the

total traffic flow ranges from 0 to 1, and decrease when the total traffic flow is greater

than 1. To understand the reason, we can split it into two cases:

• When the total traffic flow ranges from 0 to 1, then all the Equilibrium flows

from node s to t in Figure 2.2b travels in the following order: s→ u→ v → t.

This means that

α =

∑
e∈E be(x

EQ
e )5∑

e∈E(ae + be(x
EQ
e )4)xEQe

=
be1(x

EQ
e1 )5 + be5(x

EQ
e5 )5 + be4(x

EQ
e4 )5

(ae1 + be1(x
EQ
e1 )4)xEQe1 + (ae1 + be5(x

EQ
e5 )4)xEQe5 + (ae4 + be4(x

EQ
e4 )4)xEQe4

=
k5 + 0 + k5

k5 + 0 + k5

= 1

where k is the total traffic flow. This implies that the estimation for PoA(Γ)

≤ γ ≈ 2.151 from Theorem 6.2.

• When the total flow is greater than 1, then some of the Equilibrium Flows will

travel through edge 2 and edge 3 in Figure 2.2b. In this case the numerator

for α does not include flows for edge 2 and edge 3 since be = 0 for both of

the edges. But on the other hand denominator for α includes flow for edge 2

and 3, hence causing α no longer equal to 1, and hence having a tighter upper

bound.

Braess’s Paradox is in fact an extreme example where the estimate PoA from section

6.2 decreases. For the next two cases we will see that the estimate PoA from section

6.2 increases with the total traffic flow.
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Figure 7.13: Exact and Estimated PoA against traffic flow in Sioux Falls

Figure 7.14: Estimated PoA with different approach of bounding in Sioux Falls

7.3 Sioux Falls revisited

Next we would revisit the example of Sioux Falls in Section 2.6.2. By applying

estimated upper bound into the Configuration under various traffic flow we obtain

the result shown in Figure 7.13. For some of the traffic flow the constraints stated in

section 4 are satisfied, and hence we could use the estimate in Section 6.1 as shown

in Figure 7.14.

Now observe that the estimate in Section 6.1 decreases as the total flow increases.

This generally holds with the following argument:
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Figure 7.15: Choice of λ under different x′EQe

When the total traffic flow increases, Equilibrium Flow of each edges also in-

creases in general. In this case we can can pick a lower λ while constraint (23) still

holds as illustrated in figure 7.15, which turns out generates a lower upper bound

as shown in Figure 7.14.

On the other hand, the estimate in Section 6.2 increases as the total flow in-

creases. This holds because

α =

∑
e∈E be(x

EQ
e )5∑

e∈E(ae + be(x
EQ
e )4)xEQe

=

∑
e∈E be(x

EQ
e )5∑

e∈E(aex
EQ
e + be(x

EQ
e )5)

and when the Equilibrium Flow of the edges are generally large, be(x
EQ
e )5 will dom-

inate over the denominator and hence α would increase and tends to 1, hence an

increase in the estimated upper bound.
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Figure 7.16: Exact and Estimated PoA against traffic flow in Eastern Massachusetts

Figure 7.17: Estimated PoA with different approach of bounding in Eastern Mas-

sachusetts

7.4 Eastern Massachusetts

The last example to consider is the Eastern Massachusetts Transport Network[5].

From the TNTP dataset[16], we can see that there are some edge which has 0 Equi-

librium Flow, for example edge flowing from node 5 to node 10 as shown in Appendix

B. Since we do not know the Optimal Flow of this edge and this edge is not in the

form of ce(xe) = bex
4
e, this edge clearly violates the second constraint in section 3.

By applying estimated upper bound into the Configuration under various traffic

flow we obtain the result shown in 7.16. And since only the estimate from Section

?? can be used, the estimate and the worst upper bound are plotted in Figure 7.17.

45



Note that even we only used one of the two bounds, the estimated bound is still far

from the worst upper bound 2.151, this shows that the bounding in Section 6 is in

fact tight.
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8 Ethical Considerations

One of the Ethical consideration would be the legal implications on modify-

ing and using the source code. This project invloves running synthetic data with

TrafficAssignment.jl on https://github.com/chkwon/TrafficAssignment.jl.

This software is under MIT license, which means that the software is free to modify,

distribute, sell, resell, copy, publish and sublicense if the license is included in these

works. Graphs related to Price of Anarchy against traffic flow in Section 2 and

Section 7 is computed and generated using this software and some modifications are

made to compute Optimal Flow. The modified software have included the original

MIT license in TrafficAssignment.jl.

This project uses synthetic data instead of real data, so there does not have any

ethical implications with regards to personal data collection and processing.
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9 Conclusion and Future Work

9.1 Conclusion

In this project we have addressed the issue of loose bound of Price of Anarchy

which leads to a high discrepancy between actual and theoretical bound of Price

of Anarchy. One of the contributions of this project is to tighten the upper bound

with extra information on Equilibrium Flows. The project also proposes methods

to find such an upper bound for cost functions in form of ce(xe) = ae + bex
4
e.

In particular, two different approaches are proposed based on Smooth Game

Condition. The first approach suggested in Section 4 upper bounds the Price of

Anarchy via modified minimum Equilibrium Flow, where certain constraints are ap-

plicable to the Game. The second approach suggested in Section 5 upper bounds the

Price of Anarchy via modified maximum Equilibrium Flow with no extra conditions

required, which implies that the second approach can be applied to a wider range

of cases than that of first approach.

In later part of the report, those two approaches suggested previously are ex-

tended such that the upper bound does not only depend on modified maximum

or modified minimum Equilibrium Flow, but Equilibrium Flow from all edges in

the game. This extended approach further tightens the estimated lower bound and

hence a better estimate.

Last but not least the findings in the report are applied to different Real-world

Driven Data Examples, and we have shown that the estimate lower bound proposed

in this project gives a tighter upper bound with respect to the actual Price of An-

archy, compare to the worst case upper bound. As an example, Transport Network

in Sioux Falls has an estimated upper bound of 1.217, compared to actual Price of

Anarchy of 1.039 and worst upper bound of 2.151.
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9.2 Future Work

In order to compute the estimated upper bound as suggested in the report, we

often have to compute all Equilibrium Flows which is potentially computationally

expensive. In fact we have only reduced around half of the computation effort com-

pared to computing the exact Price of Anarchy, which also requires Optimal Flows.

Hence it would be interesting whether we could obtain a good approximation on

Equilibrium Flow without computing the whole Traffic Flow, or even to approach

the problem without calculating Equilibrium Flow.

There are also a couple of ideas that are worth investigating but not has not

been done in this project, such as:

• Merging the approaches in Section 4 and 5 into one approach with a ”smooth”

upper bound instead of having a spike in Figure 7.13. By finding a smooth

upper bound around the spike likely implies a tighter upper bound around

that region.

• Investigate the relation between xEQe and xOPT∗e in equation (11). From the re-

lation we could have a better understanding on the behaviour on the inequality

(13), and hence a chance to obtain a tighter bound.
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Appendices

Appendix A: Sioux Falls Graph

Graph obtained from [16]:

Figure 9.18: Graph of Sioux Falls Example
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Appendix B: Eastern Massachusetts Graph

Figure 9.19: Graph of Eastern Massachusetts Traffic
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